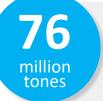
School of Engineering and Built Environment Griffith University

1701ENG – Creative Engineering Trimester 1, 2021

A Design Portfolio

WormBot: Solution for Apartments' Organic Waste


THIS IS AN INDIVIDUAL ASSESSMENT ITEM.

Toshimitsu Ota (s5251464)

RESEARCH AND GROUP POINT OF VIEW

Organic Waste Problems in South East Queensland

Waste generated annually in 2019 in Australia (Australian Bureau of Statistics, 2020)

10% up

Waste increased from the previous year (Australian Bureau of Statistics, 2020)

was organic waste, in comparison 20%plastics 3% and glass 2% (Australian Bureau of Statistics, 2020)

> **42**% of

Organic waste comes from households (Australian Bureau of Statistics, 2020)

25 times

of waste

Methane is more potent than CO2. Organic waste produces methane in landfill. (Reucassel 2020)

Is lifestyle changing? Is there a particular group needs attention?

1701ENG - Creative Engineering

78% up

4

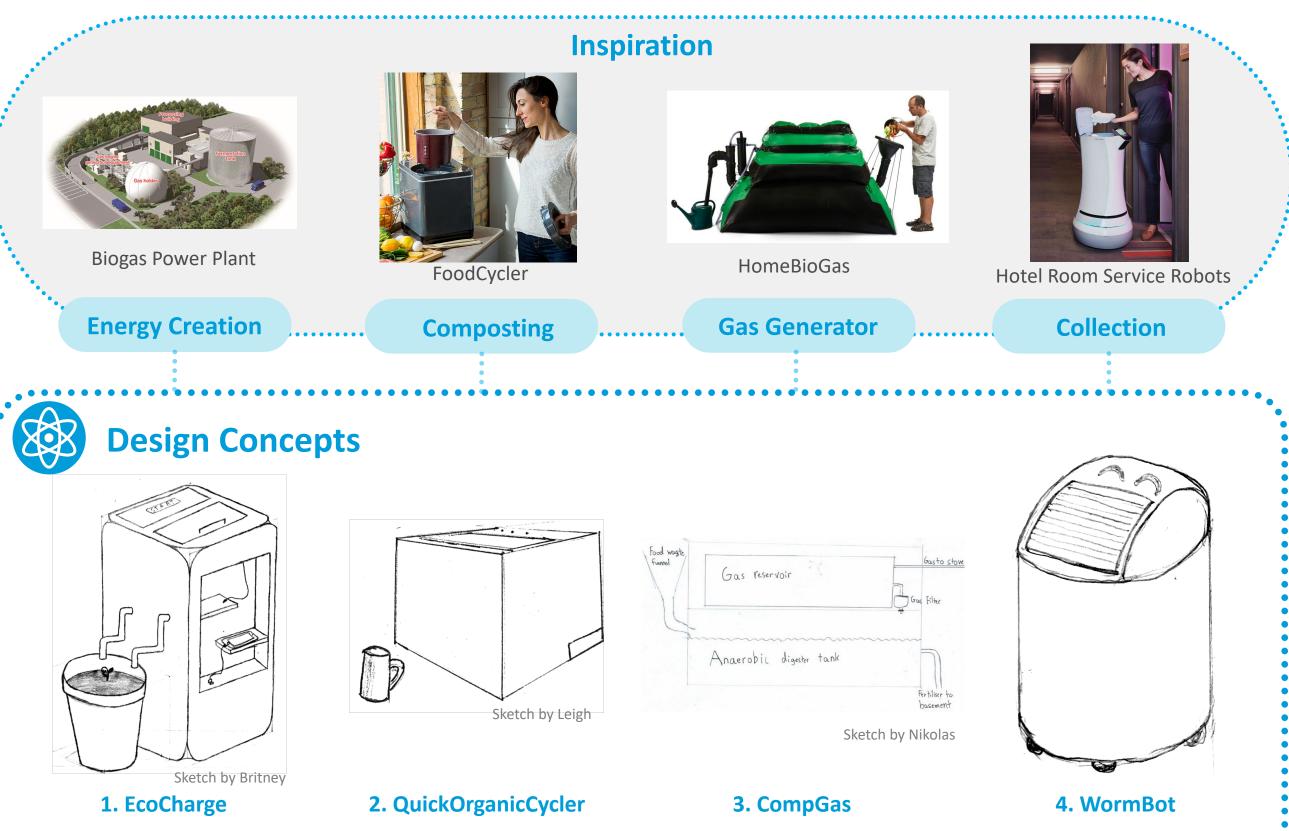
Apartment occupancy increased in the last 25 years in Australia (Australian Bureau of Statistics, 2016a)

Live in apartment buildings in Queensland (Australian Bureau of Statistics, 2016b)

For Apartment Dwellers

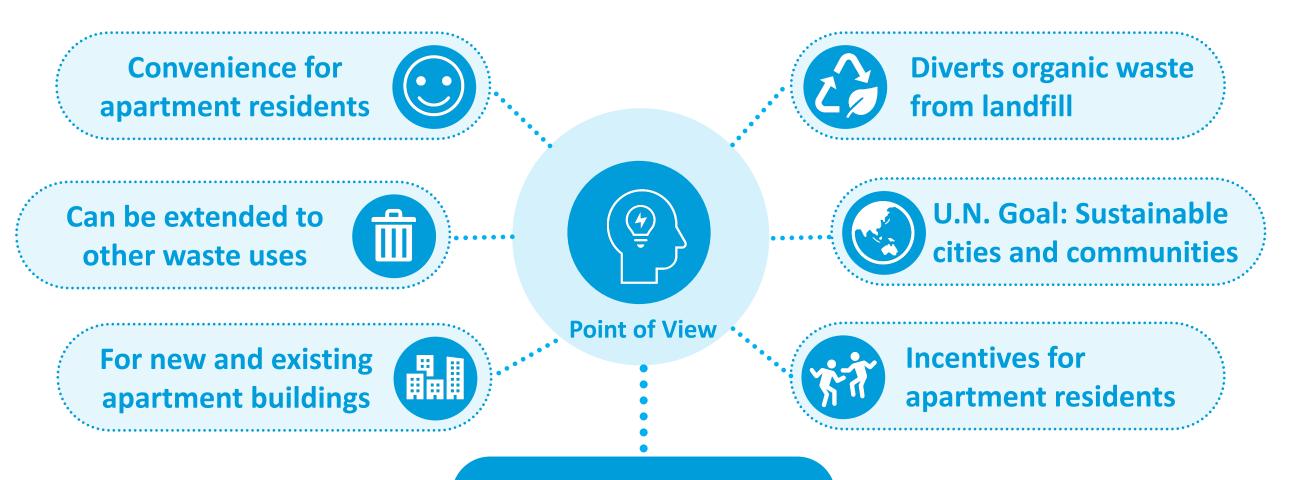
- No space or incentives to own a compost bin
- No convenient collection services

Point of View

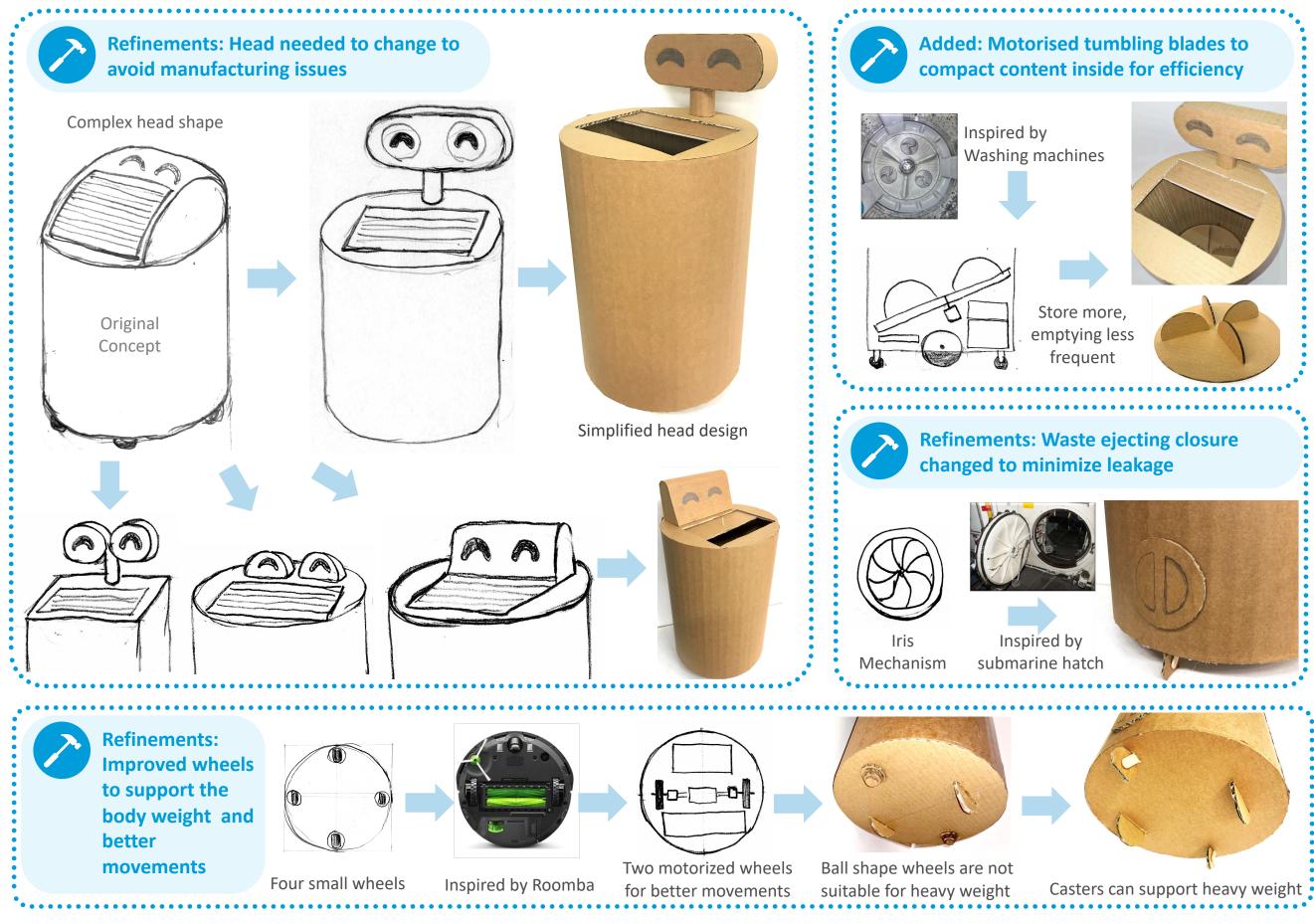

Apartment residents in South East Queensland need a convenient way to dispose of organic waste. It should have a retrofitting ability to be implemented in both existing and new apartment buildings.

Aligning with United Nations

SUSTAINABLE GALS


Goal 11. Sustainable Cities and Communities

DESIGN DEVELOPMENT


Takes food waste and coverts to energy to charge small electrical devices such as mobile phones. Converts organic food waste to small chips for feeding gardens. Can be placed in a kitchen. Built into kitchen and turns food scraps into methane gas to be used for cooking. Comes to your door to collect food scraps when you book from an app. It empties when full.

DESIGN DEVELOPMENT

Evaluating the Concepts

	1. EcoCharge	2. Quick Organic Cycler	3. CompGas	4. WormBot
Retrofitting	10	10	0 - Only for new buildings	10
Incentives	IO - Energy to charge small devices	5 - Compost chips for gardens	0	10 - Fun to use and educational
Convenience	5 - No need to leave room. Loss of room space.	5 - No need to leave room. Chips need to be disposed.	room. Loss of kitchen space.	10 - No need to leave room. No loss of room space.
Versatility	0	0		I0 - Can be used for other waste collection.
Overall Score	25	20	15	40

FINAL DESIGN

WormBot

A robot that comes to your door and collects organic waste in an apartment building. Automatically empties when it gets full.

Network connectivity

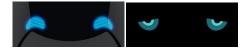
Through network it controls elevators and receives waste collection requests from residents via a phone app.

Automatic Roller door..

Mortors open and close the door. Users don't need to touch the door.

Body height

90 cm height. Same as standard kitchen bench height. Easy to tip waste without bending over.


Tumbling blades

Motorised tumbles content to air and compact for saving space.

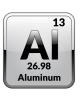
OLED display

Outputs statuses. Eyes change according to users' actions to interact. E.g. Sad eyes for inserting wrong items.

Behind screen cameras

Detects what objects users putting into the storage. Also used for navigations and automations.

Ejection door


Silicon gasket seals tight to prevent leakage.

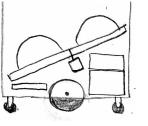
Wheels

Two motorized wheels with two casters enable WormBot to move any directions.

Material Selection

Aluminium Strong, lightweight and rust resistant. Easily recycled using

low energy (Aluminum Association, 2021).


Used for the

body chassis.

Stainless Steel

Strong, rust resistant, hygienic and affordable. Easy to clean. 100% recyclable (ASSDA, 2020).

Used for interior storage and tumbling blades.

ABS Plastics

High rigidity, impact resistant and easy to manufacture. Recyclable. (Omnexus, 2017)

Used for the body shell and the head.

Silicon Rubber

Used for the gasket of ejection door to prevent odor and leakages.

CALLANDING

REFERENCES

Aluminum Association 2021, Recycling Aluminum, Aluminum Association, viewed 6 Jun 2021, https://www.aluminum.org/industries/production/recycling-.

ASSDA 2020, Benefits of stainless steel, ASSDA, viewed 6 Jun 2021, <https://www.assda.asn.au/benefits-of-stainless-steel>.

Australian Bureau of Statistics 2016a, Population Projections by Region, 2017-2066, Australian Government, viewed 20 March 2021, http://stat.data.abs.gov.au/Index.aspx?Queryid=1080>.

Australian Bureau of Statistics 2016b, 2071.0 - Census of Population and Housing: Reflecting Australia - Stories from the Census, 2016, Australian Government, viewed 20 March 2021, https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/2071.0~2016~Main%20Features~Apartment%20Living~20>.

Australian Bureau of Statistics 2020, *Waste Account, Australia, Experimental Estimates*, Australian Government, viewed 14 March 2021, https://www.abs.gov.au/statistics/environment/environmental-management/waste-account-australia-experimental-estimates/latest-release>.

Omnexus 2017, Acrylonitrile Butadiene Styrene (ABS) and its Features, viewed 19 April 2021, <a href="https://omnexus.specialchem.com/selection-guide/acrylonitrile-butadiene-styrene-abs-plastic-styrene-abs-p

Reucassel, C 2020, War on waste: episode 1, series, viewed 15 March 2020, ABC iview.